

2.4MHz White LED Step-Up Converter with Built-In Schottky in ThinSOT™

August 2003

FEATURES

- Inherently Matched LED Current
- Drives Up to Six LEDs from a 3.6V Supply
- No External Schottky Diode Required
- Open LED Protection
- High Efficiency: 79% Typical
- Requires Only 0.22µF Output Capacitor
- Switching Frequency Above AM Broadcast Band
- Low Profile (<1mm) SOT-23 Packaging

APPLICATIONS

- Cellular Phones
- PDAs, Handheld Computers
- Digital Cameras
- MP3 Players
- GPS Receivers

DESCRIPTION

The LT®3465A is a step-up DC/DC converter designed to drive up to six LEDs in series from a Li-Ion cell. Series connection of the LEDs provides identical LED currents and eliminates the need for ballast resistors. This device integrates the Schottky diode required externally on competing devices. Additional features include output voltage limiting when LEDs are disconnected, one-pin shutdown and dimming control.

The LT3465A switches at 2.4MHz, allowing the use of tiny external components. Constant frequency switching results in low input noise and a small output capacitor. Just $0.22\mu F$ is required for 3-, 4- or 5-LED applications.

The LT3465A is available in a low profile (<1mm) 6-lead SOT-23 package.

7, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Figure 1. Li-Ion Powered Driver for Four White LEDs

3465a

ABSOLUTE MAXIMUM RATINGS

(Note 1)16VSW Voltage36VFB Voltage2VCTRL Voltage10VOperating Temperature Range (Note 2)-40°C to 85°CMaximum Junction Temperature125°CStorage Temperature Range-65°C to 150°CLead Temperature (Soldering, 10 sec)300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_{IN} = 3V$, $V_{CTRL} = 3V$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Operating Voltage			2.7			V
Maximum Operating Voltage					16	V
Feedback Voltage	$0^{\circ}C \leq T_A \leq 85^{\circ}C$		188	200	212	mV
FB Pin Bias Current			10	35	100	nA
Supply Current	Not Switching CTRL = 0V		1.9 2.0	2.6 3.2	3.3 5.0	mA μA
Switching Frequency			1.8	2.4	2.8	MHz
Maximum Duty Cycle		•	90	93		%
Switch Current Limit		•	225	340		mA
Switch V _{CESAT}	I _{SW} = 250mA			300		mV
Switch Leakage Current	V _{SW} = 5V			0.01	5	μА
V _{CTRL} for Full LED Current			1.8			V
V _{CTRL} to Shut Down Device					50	mV
CTRL Pin Bias Current	T _A = 85°C T _A = -40°C		48 40 60	60 50 75	72 60 90	μΑ μΑ μΑ
Schottky Forward Drop	I _D = 150mA			0.7		V
Schottky Leakage Current	V _R = 30V				4	μА

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The LT3465AE is guaranteed to meet performance specifications from 0° C to 70° C. Specifications over the -40° C to 85° C operating temperature range are assured by design, characterization and correlation with statistical process controls.

TYPICAL PERFORMANCE CHARACTERISTICS

Shutdown Quiescent Current

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

V_{OUT} (**Pin 1**): Output Pin. Connect to output capacitor and LEDs. Minimize trace between this pin and output capacitor to reduce EMI.

GND (Pin 2): Ground Pin. Connect directly to local ground plane.

FB (**Pin 3**): Feedback Pin. Reference voltage is 200mV. Connect LEDs and a resistor at this pin. LED current is determined by the resistance and CTRL pin voltage:

$$\begin{split} I_{LED} &\approx \frac{200 mV}{R_{FB}} \text{ When } V_{CTRL} > 1.8V \\ I_{LED} &\approx \frac{V_{CTRL}}{5 \bullet R_{FB}} \text{ When } V_{CTRL} < 1V \end{split} \tag{1}$$

CTRL (Pin 4): Dimming Control and Shutdown Pin. Ground this pin to shut down the device. When V_{CTRL} is greater than about 1.8V, full-scale LED current is generated. When V_{CTRL} is less than 1V, LED current is reduced.

 V_{IN} (Pin 5): Input Supply Pin. Must be locally bypassed with a $1\mu F$ X5R or X7R type ceramic capacitor.

SW (Pin 6): Switch Pin. Connect inductor here.

LINEAR TECHNOLOGY

BLOCK DIAGRAM

Figure 2. LT3465A Block Diagram

APPLICATIONS INFORMATION

Operation

The LT3465A uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the block diagram in Figure 2. At the start of each oscillator cycle, the SR latch is set, which turns on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A2, the SR latch is reset turning off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the reference voltage of 200mV. In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered. The CTRL pin voltage is used to adjust the reference voltage.

Minimum Output Current

The LT3465A can drive a 3-LED string at 0.2mA LED current without pulse skipping. As current is further reduced, the device may begin skipping pulses. This will

result in some low frequency ripple, although the LED current remains regulated on an average basis down to zero. The photo in Figure 3 details circuit operation driving three white LEDs at a 0.2mA load. Peak inductor current is less than 30mA and the regulator operates in discontinuous mode, meaning the inductor current reaches zero during the discharge phase. After the inductor current reaches zero, the SW pin exhibits ringing due to the LC tank circuit formed by the inductor in combination with switch and diode capacitance. This ringing is not harmful; far less spectral energy is contained in the ringing than in the switch transitions. The ringing can be damped by application of a 300Ω resistor across the inductor, although this will degrade efficiency.

Figure 3. Switching Waveforms

3465ai

APPLICATIONS INFORMATION

Inductor Selection

A $22\mu H$ or $10\mu H$ inductor is recommended for most LT3465A applications. Although small size and high efficiency are major concerns, the inductor should have low core losses at 1.2MHz and low DCR (copper wire resistance). Some inductors in this category with small size are listed in Table 1. The efficiency comparison of different inductors is shown in Figure 4.

Table 1. Recommended Inductors

PART NUMBER	DCR (Ω)	CURRENT RATING (mA)	MANUFACTURER
LQH32CN220	0.71	250	Murata 814-237-1431 www.murata.com
ELJPC220KF	4.0	160	Panasonic 714-373-7334 www.panasonic.com
CDRH3D16-220	0.53	350	Sumida 847-956-0666 www.sumida.com
LB2012B220M	1.7	75	Taiyo Yuden 408-573-4150 www.t-yuden.com
LEM2520-220	5.5	125	Taiyo Yuden 408-573-4150 www.t-yuden.com

Figure 4. Efficiency Comparison of Different Inductors

Capacitor Selection

The small size of ceramic capacitors makes them ideal for LT3465A applications. X5R and X7R types are recommended because they retain their capacitance over wider voltage and temperature ranges than other types such as Y5V or Z5U. A $1\mu F$ input capacitor and a $0.22\mu F$ output capacitor are sufficient for most LT3465A applications.

Table 2. Recommended Ceramic Capacitor Manufacturers

MANUFACTURER	PHONE	URL	
Taiyo Yuden	408-573-4150	www.t-yuden.com	
Murata	814-237-1431	www.murata.com	
Kemet	408-986-0424	www.kemet.com	

Inrush Current

The LT3465A has a built-in Schottky diode. When supply voltage is applied to the V_{IN} pin, the voltage difference between V_{IN} and V_{OUT} generates inrush current flowing from input through the inductor and the Schottky diode to charge the output capacitor to $V_{\text{IN}}.$ The maximum current the Schottky diode in the LT3465A can sustain is 1A. The selection of inductor and capacitor value should ensure the peak of the inrush current to be below 1A. The peak inrush current can be calculated as follows:

$$\begin{split} & I_{P} = \frac{V_{IN} - 0.6}{L \cdot \omega} \cdot exp \left[-\frac{\alpha}{\omega} \cdot a \tan \left(\frac{\omega}{\alpha} \right) \right] \cdot sin \left[a \tan \left(\frac{\omega}{\alpha} \right) \right] \\ & \alpha = \frac{r + 1.5}{2 \cdot L} \\ & \omega = \sqrt{\frac{1}{L \cdot C} - \frac{\left(r + 1.5\right)^{2}}{4 \cdot L^{2}}} \end{split}$$

where L is the inductance, r is the resistance of the inductor and C is the output capacitance. For low DCR inductors, which is usually the case for this application, the peak inrush current can be simplified as follows:

$$I_{P} = \frac{V_{IN} - 0.6}{L \cdot \omega} \cdot exp\left(-\frac{\alpha}{\omega} \cdot \frac{\pi}{2}\right)$$

IINEAD

APPLICATIONS INFORMATION

Table 3 gives inrush peak currents for some component selections.

Table 3. Inrush Peak Current

V _{IN} (V)	r (Ω)	L (μ H)	C (μ F)	I _P (A)
5	0.5	22	0.22	0.38
5	0.5	22	1	0.70
3.6	0.5	22	0.22	0.26
5	0.5	33	1	0.60

LED Current and Dimming Control

The LED current is controlled by the feedback resistor (R1 in Figure 1) and the feedback reference voltage.

$$I_{LED} = V_{FB}/R_{FB}$$

The CTRL pin sets the feedback reference voltage as shown in the Typical Performance Characteristics. When CTRL is at 1.8V or more, the feedback reference is 200mV, which results in full-scale LED current. The CTRL pin can be used as a dimming control when its voltage is between 200mV to 1.5V. To maintain LED current accuracy, a 1% or better resistor for R1 is recommended. The formula and table for R_{FB} selection are shown below:

 $R_{FB} = 200 \text{mV/I}_{LEDF}$

where I_{LEDF} is full-scale LED current

Table 4. R_{FB} Resistor Value Selection

I _{LED} (mA)	R1 (Ω)
5	40.2
10	20.0
15	13.3
20	10.0

Dimming Using Filtered PWM

Dimming can be realized by using an RC filter in front of the CTRL pin to filter a PWM signal, as depicted in Figure 5. The filtered PWM signal is equivalent to a constant voltage. The time constant R1 • C1 should be much lower than the frequency of the PWM signal. Additionally, R1 should be small compared to the $50k\Omega$ impedance of the CTRL pin. Suggested values are shown in Figure 5.

Figure 5. Dimming Control Using a Filtered PWM Signal

Dimming Using Direct PWM

Unlike the LT3465, the LT3465A does not have internal soft-start. Although the input current is higher during start-up, the absence of soft-start allows the CTRL pin to be directly driven with a PWM signal for dimming. A zero percent duty cycle sets the LED current to zero, while 100% duty cycle sets it to full current. Average LED current increases proportionally with the duty cycle of the PWM signal. PWM frequency should be between 1kHz and 10kHz for best performance. The PWM signal should be at least 1.8V in magnitude; lower voltage will lower the feedback voltage as shown in Equation 1. Waveforms are shown for a 1kHz PWM and 10kHz PWM signal in Figures 6a and 6b respectively.

Figure 6a.

Figure 6b.

3465a

APPLICATIONS INFORMATION

Open Circuit Protection

The LT3465A has an internal open-circuit protection circuit. When the LEDs are disconnected from the circuit or fail open, V_{OUT} is clamped at 30V. The LT3465A will then switch at a low frequency, minimizing input current. V_{OUT} and input current during open circuit are shown in the Typical Performance Characteristics.

Board Layout Consideration

As with all switching regulators, careful attention must be paid to the PCB board layout and component placement. To maximize efficiency, switch rise and fall times are made as short as possible. To prevent electromagnetic interference (EMI) problems, proper layout of the high frequency

Figure 7. Recommended Component Placement

switching path is essential. Place C_{OUT} next to the V_{OUT} pin. Always use a ground plane under the switching regulator to minimize interplane coupling. In addition, the ground connection for the feedback resistor R1 should be tied directly to the GND pin and not shared with any other component, ensuring a clean, noise-free connection. Recommended component placement is shown in Figure 7.

Start-Up Input Current

As previously mentioned, the LT3465A does not have an internal soft-start circuit. Inrush current can therefore rise to approximately 400mA as shown in Figure 8 when driving 4 LEDs. The LT3465 has an internal soft-start circuit and is recommended if inrush current must be minimized.

Figure 8.

TYPICAL APPLICATIONS

Li-Ion to Two White LEDs

Li-Ion to Three White LEDs

TYPICAL APPLICATIONS

Li-Ion to Five White LEDs

C_{OUT}: TAIYO YUDEN GMK212BJ224 L1: MURATA LQH32CN220

PACKAGE DESCRIPTION

S6 Package 6-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1636)

- 1. DIMENSIONS ARE IN MILLIMETERS
- 2. DRAWING NOT TO SCALE
- 3. DIMENSIONS ARE INCLUSIVE OF PLATING
- 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
- 5. MOLD FLASH SHALL NOT EXCEED 0.254mm
- 6. JEDEC PACKAGE REFERENCE IS MO-193

TYPICAL APPLICATION

Li-Ion to Six White LEDs

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1618	Constant Current, Constant Voltage, 1.4MHz, High Efficiency Boost Regulator	Up to 16 White LEDs, V_{IN} : 1.6V to 18V, $V_{OUT(MAX)}$: 34V, I_Q : 1.8mA, I_{SD} : <1 μ A, 10-Lead MS Package
LT1932	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 8 White LEDs, V_{IN} : 1V to 10V, $V_{OUT(MAX)}$: 34V, I_Q : 1.2mA, I_{SD} : <1 μ A, ThinSOT Package
LT1937	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 4 White LEDs, V_{IN} : 2.5V to 10V, $V_{OUT(MAX)}$: 34V, I_Q : 1.9mA, I_{SD} : <1 μ A, ThinSOT, SC70 Packages
LTC [®] 3200-5	Low Noise, 2MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $V_{IN}\!\!:$ 2.7V to 4.5V, $I_Q\!\!:$ 8mA, $I_{SD}\!\!:$ $<\!1\mu\text{A},$ ThinSOT Package
LTC3200	Low Noise, 2MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $V_{IN}\!\!:$ 2.7V to 4.5V, $I_Q\!\!:$ 8mA, $I_{SD}\!\!:$ $<\!1\mu\text{A},$ 10-Lead MS Package
LTC3201	Low Noise, 1.7MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $V_{IN}\!\!:$ 2.7V to 4.5V, $I_Q\!\!:$ 6.5mA, $I_{SD}\!\!:$ $<\!1\mu\text{A},$ 10-Lead MS Package
LTC3202	Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver	Up to 8 White LEDs, $V_{IN}\!\!:$ 2.7V to 4.5V, $I_Q\!\!:$ 5mA, $I_{SD}\!\!:$ <1 μA , 10-Lead MS Package
LTC3404	600mA (I _{OUT}), 1.4MHz Synchronous Step-Down DC/DC Converter	95% Efficiency, V _{IN} : 2.7V to 6V, V _{OUT(MIN)} : 0.8V, I _Q : 10 μ A, I _{SD} : <1 μ A, MS8 Package
LTC3405 LTC3405A	300mA (I _{OUT}), 1.5MHz Synchronous Step-Down DC/DC Converters	95% Efficiency, V _{IN} : 2.7V to 6V, V _{OUT(MIN)} : 0.8V, I _Q : 20 μ A, I _{SD} : <1 μ A, ThinSOT Package
LTC3406 LTC3406B	600mA (I _{OUT}), 1.5MHz Synchronous Step-Down DC/DC Converters	95% Efficiency, V _{IN} : 2.5V to 5.5V, V _{OUT(MIN)} : 0.6V, I _Q : 20μA, I _{SD} : <1μA, ThinSOT Package
LT3407	Dual 600mA (I _{OUT}), 1.5MHz Synchronous Step-Down DC/DC Converter	96% Efficiency, V _{IN} : 2.5V to 5.5V, V _{OUT(MIN)} : 0.6V, I _Q : 40 μ A, I _{SD} : <1 μ A, MS Package
LTC3412	2.5A (I _{OUT}), 4MHz Synchronous Step-Down DC/DC Converter	95% Efficiency, V _{IN} : 2.5V to 5.5V, V _{OUT(MIN)} : 0.8V, I _Q : 60μA, I _{SD} : <1μA, TSSOP16E Package
LTC3440	600mA (I _{OUT}), 2MHz Synchronous Buck-Boost DC/DC Converter	95% Efficiency, V _{IN} : 2.5V to 5.5V, V _{OUT(MIN)} : 2.5V, I _Q : 25μA, I _{SD} : <1μA, 10-Lead MS Package
LTC3465	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 5 White LEDs, V _{IN} : 2.7V to 16V, I _Q : 1.9A, I _{SD} : <1µA, ThinSOT Package